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Abstract

The fields scattered by dielectric objects placed inside parallel-plate waveguides and periodic structures in two dimen-
sions may efficiently be computed via a finite-difference frequency-domain (FDFD) method. This involves large, sparse
linear systems of equations that may be solved using preconditioned Krylov subspace methods. Our preconditioners
involve fast discrete trigonometric transforms and are based on a physical approximation. Simulations show significant
gain in terms of computation time and iteration count in comparison with results obtained with preconditioners based
on incomplete LU (ILU) factorization. Moreover, with the new preconditioners, the required number of iterations is inde-
pendent of the grid size.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Due to the introduction of electromagnetically complex environments, such as metamaterials, in the design
of antennas and waveguides and in electromagnetic shielding, the corresponding problems in computational
electromagnetics have become more demanding both in size and complexity. Finite-difference methods consti-
tute versatile tools by which these problems may be solved. The most popular of them, the finite-difference
time-domain (FDTD) method, initially proposed by Yee [1], leads to an explicit leap-frog scheme for march-
ing on in time. Nevertheless, because it is a time-domain approach, FDTD is in general not suitable for
dispersive media, whose properties are frequency-dependent, or for applications where the interest is in the
time-harmonic response of the system. In such configurations, one would have to use a frequency-domain
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method instead, e.g. the finite-difference frequency-domain (FDFD) method. Besides, for many configurations
such as 2D waveguides, a frequency-domain approach allows for an exact modal formulation of the absorbing
boundary conditions [2,3].

The FDFD approach leads to a sparse linear system Au = b. The associated matrix–vector product is fast,
which suggests that Krylov subspace iterative methods may constitute suitable solvers. However, due to ill-
conditioning, convergence is often slow, so that long computation times are required. One way to speed up
the convergence rate is to precondition the system. Instead of the original linear system Au = b, a precondi-
tioned system A�1

0 Au ¼ A�1
0 b is solved. The matrix A0, called the preconditioner, is chosen keeping two criteria

in mind: the system A0w = d can be rapidly solved for any vector d, and the iterative method converges in less
steps with A�1

0 A than with A. The latter is often realized by using an approximated inverse A�1
0 � A�1, which

improves the conditioning of the system.
A large family of preconditioners already exists for sparse linear systems. Among them, one of the most

popular techniques is the incomplete factorization method. The standard incomplete LU factorization
(ILU) uses an approximated LU factorization of A, skipping parts of the computation by imposing on both
L and U the sparsity pattern of A. This technique can be modified to allow for extra fill-in during the factor-
ization. Another preconditioning approach widely used in many branches of applied physics is based on mul-
tigrid theory. However, in the context of the Helmholtz equation, it has been demonstrated that this leads to
difficulties concerning both of the main multigrid components: the smoothing and the coarse grid correction.
In [4,5], these difficulties are analyzed in detail and measures are proposed to overcome them. Preconditioners
that involve fast discrete transforms have been introduced in the preconditioning of Toeplitz matrices by circ-
ulant matrices [6]. For the discretized counterpart of the Helmholtz equation, such fast preconditioners have
been developed to treat a box-shaped domain filled by a homogeneous medium with absorbing boundary con-
ditions [7,8]. For that problem, the application of the preconditioner effectively amounts to replace the bound-
ary conditions by more convenient ones (Dirichlet or Neumann). Larsson and Otto proposed this
preconditioning method [3] to treat the propagation of hydro-acoustic waves in a duct. Combined with a
domain decomposition method, their technique has been extended to domains consisting of layers with differ-
ent material properties [9,10].

In this article, we consider the FDFD method for two 2D structures containing dielectric scatterers,
namely, a parallel-plate waveguide and a transversely periodic structure. The time-harmonic problem is first
reduced to the Helmholtz equation and discretized with finite differences. The extent of the computational
domain is then limited to the section where the scatterers are located. At the transverse boundaries that limit
this section, we use the modal representation of the solution to obtain an exact formulation for the absorbing
boundary conditions. To define the preconditioner, we look at the physics of the problem. We notice that the
field can be represented as uncoupled propagating or attenuating modes everywhere except in the inhomoge-
neous regions. Even there, we can expect that an uncoupled modal description constitutes a good approxima-
tion. Therefore, we define the preconditioner such that it approximates the linear system by decoupling the
mutual influences of all the modal constituents propagating or attenuating inside the structure. The resulting
preconditioner can be associated with a matrix with a block structure that is diagonalizable by means of a fast
discrete trigonometric transformation. This corresponds to an approximation of the initial 2D problem by sev-
eral uncoupled 1D problems, associated with an effective dielectric permittivity that is invariant along the
transverse coordinate.

We start by presenting the FDFD approach and the preconditioner for the parallel-plate waveguide in Sec-
tion 2. In Section 3, the same approach is applied to the periodic structure. We discuss a few numerical exper-
iments and compare our preconditioner with ILU preconditioners in Section 4.

2. Parallel-plate waveguides

2.1. Configuration and formulation

In a two-dimensional configuration, we consider a parallel-plate waveguide containing dielectric scatterers
and excited by an incident TE field, i.e. oriented along uz, the unit vector in the z-direction (Fig. 1). The total
field is firstly decomposed into two parts as follows:



Fig. 1. Parallel-plate waveguide configuration.
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E ¼ ðEi
z þ Es

zÞuz; ð1Þ

where Ei

z and Es
z, respectively, represent the non-vanishing components of the incident and scattered electric

fields. In this configuration, the time-harmonic Maxwell equations can be reduced to the Helmholtz equation
for Es

z, i.e.
DEs
z þ k2

0erEs
z ¼ jk0Z0J c

z ; ð2Þ

in which k0 and Z0, respectively, stand for the free-space wavenumber and wave impedance. Further, j ¼

ffiffiffiffiffiffiffi
�1
p

and er is the relative permittivity of the dielectric medium. The contrast current density J c
z is defined by
J c
z ¼ j

k0

Z0

ðer � 1ÞEi
z: ð3Þ
Furthermore, the following boundary conditions are imposed at the metallic plates:
Es
z ¼ 0 for x ¼ 0 or x ¼ X : ð4Þ
In the y-direction, the physical domain is assumed to be infinite. However, the extent of the computational
domain has to remain finite. It is limited to the waveguide section where the scatterers are located by placing
two artificial boundaries at y = 0 and y = Y on which exact discrete absorbing (non-reflecting) boundary con-
ditions will be supplied.

2.2. Discretization

We introduce an uniform grid as
xm ¼ mDx for m ¼ 0; . . . ;M with Dx ¼ X=M ;

yn ¼ nDy for n ¼ 0; . . . ;N with Dy ¼ Y =N ;
ð5Þ
in which M and N are the number of grid points with respect to x and y, respectively. The Helmholtz Eq. (2) is
discretized on the interior points of this grid using the central-difference approximation for the spatial deriv-
atives. This leads to
1

ðDxÞ2
ðEs

z½mþ 1; n� � 2Es
z½m; n� þ Es

z½m� 1; n�Þ þ 1

ðDyÞ2
ðEs

z½m; nþ 1� � 2Es
z½m; n� þ Es

z½m; n� 1�Þ

þ k2
0er½m; n�Es

z½m; n� ¼ jk0Z0J c
z ½m; n�; ð6Þ
for m = 1, . . .,M � 1 and n = 1, . . .,N � 1.

2.3. Boundary conditions

On the metallic plates, the discretization of (4) gives
Es
z½0; n� ¼ Es

z½M ; n� ¼ 0 for n ¼ 0; . . . ;N : ð7Þ

For the absorbing boundary conditions, an exact formulation can be obtained from a modal representation of
the solution. Our approach is very similar to the ones that lead to non-local Dirichlet-to-Neuman maps [2,3],
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except that we start directly from the discretized problem. Thus, our discretization scheme is rendered self-con-
sistent, which implies that additional discretization errors due to the boundary conditions are avoided. Firstly,
we focus on the boundary placed at y = 0, i.e. n = 0. The discrete sine transform of the scattered field with
respect to m is defined at n = 1 by
bEs
z½‘; 1� ¼

ffiffiffiffiffi
2

M

r XM�1

m¼1

Es
z½m; 1� sin

pm‘
M

; ð8Þ
for ‘ = 1, . . .,M � 1. If we assume that no scatterers are present near the boundary (i.e. er[m,n] = 1 for n 6 1),
the scattered field can be represented in terms of modes in this region. An exact absorbing boundary condition
is obtained by imposing that each mode should propagate or attenuate away from the computational domain.
Hence, bEs

z½‘; 0� follows from bEs
z½‘; 1� according to
bEs
z½‘; 0� ¼ bEs

z½‘; 1�e�c½‘�Dy ; ð9Þ
where the propagation coefficients of the modes c[‘] are obtained directly from the discretized Helmholtz equa-
tion, which yields
c½‘� ¼ 2

Dy
arcsin

Dy
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x ½‘� � k2
0

q� �
: ð10Þ
Furthermore, the associated transverse wavenumbers are given by
kx½‘� ¼
2

Dx
sin

p‘
2M

: ð11Þ
Finally, we perform a backward discrete sine transform to obtain the value of the field on the boundary
Es
z½m; 0� ¼

ffiffiffiffiffi
2

M

r XM�1

‘¼1

bEs
z½‘; 0� sin

pm‘
M

: ð12Þ
From the expressions (8), (9) and (12), we obtain the formulation of the absorbing boundary condition
Es
z½:; 0� ¼ ðUCU HÞEs

z½:; 1�; ð13Þ
where U = UH = U�1 stands for the matrix associated with the discrete sine transform. Its elements are given
by
ðUÞ‘;‘0 ¼
ffiffiffiffiffi
2

M

r
sin

p‘‘0

M
; ‘; ‘0 ¼ 1; . . . M � 1: ð14Þ
Further,
C ¼ diagM�1ðe�c½1�Dy ; . . . ; e�c½M�1�DyÞ ð15Þ

is a diagonal matrix describing the propagation and/or attenuation of the modes between n = 1 and n = 0.

At y = Y, we again assume that there are no scatterers beyond or crossing the boundary. A similar analysis
leads to
Es
z½:;N � ¼ ðUCU H ÞEs

z½:;N � 1�: ð16Þ
2.4. Linear system

Using (7), (13) and (16) to account for the field on the boundary of the domain in (6), we obtain a linear
system A u = b of size Nu = (M � 1)(N � 1). The unknown u and the right-hand side b are vectors containing
the scattered electric field Es

z and the source term jk0Z0J c
z , respectively.
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The matrix A has a block structure which can be expressed by means of the Kronecker product (denoted by
�) [11]
A ¼ D2x � IN�1 þ IM�1 � D2y þ
1

ðDyÞ2
ðUCUH Þ � ðB1 þ BN�1Þ þ k2

0Ker ; ð17Þ
where IM�1 and IN�1 denote identity matrices of size M � 1 and N � 1, respectively. The matrices D2x and D2y

are associated with the discretization of the second-order partial derivatives
D2x ¼
1

ðDxÞ2
tridiagM�1ð1;�2; 1Þ;

D2y ¼
1

ðDyÞ2
tridiagN�1ð1;�2; 1Þ:

ð18Þ
The square matrices Bn, of size (N � 1), are given by
ðBnÞ‘;‘0 ¼
1 for ‘ ¼ ‘0 ¼ n;

0 otherwise:

�
ð19Þ
Further, Ker is a diagonal matrix containing the relative permittivity values on the interior points of the grid.
In the context of iterative solvers based on Krylov subspaces, the computation time needed for one iteration

mainly depends on the complexity of the matrix–vector product Av for any v. By employing fast algorithms to
compute the discrete sine transforms, this complexity is of order O(MN + M logM), which is very efficient.

2.5. Discrete sine transform preconditioner

Our preconditioner A0 is defined so that it decouples all the modal constituents propagating or attenuating
inside an effective background. This yields an approximation of the actual configuration only in the inhomo-
geneous regions where the scatterers are located. In order to examine the mutual influence of these constitu-
ents in the original linear system, we analyze the discrete sine transform of A with respect to the transverse
direction
bA ¼ ðUH � IN�1ÞAðU � IN�1Þ: ð20Þ

Using (17) and results about sine transforms of diagonal and tridiagonal matrices [12], we obtain
bA ¼ bD2x � IN�1 þ IM�1 � D2y þ
1

Dy2
C� ðB1 þ BN�1Þ þ k2

0

XN�1

n¼1

ðbT n
er
� bH n

er
Þ � Bn; ð21Þ
in which bD2x ¼ diagM�1ð�k2
x ½‘�Þ. For n ¼ 1; . . . ;N � 1; bT n

er
and bH n

er
are the respective Toeplitz and Hankel

matrices,
ðbT n
er
Þ‘;‘0 ¼

1ffiffiffiffiffiffiffi
2M
p ~er½‘� ‘0; n�;

ð bH n
er
Þ‘;‘0 ¼

1ffiffiffiffiffiffiffi
2M
p ~er½‘þ ‘0; n�;

ð22Þ
where
~er½‘; n� ¼
ffiffiffiffiffi
2

M

r XM�1

m¼1

er½m; n� cos
p‘m
M

: ð23Þ
Note that ~er½‘; n� is the standard discrete cosine transform of the vector
ð0; er½1; n�; . . . ; er½M � 1; n�; 0ÞT ð24Þ
for each value of n.
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To remove the coupling between the modal constituents in the waveguide, bA must be approximated by a
matrix that is block diagonal. In the context of fast-transform based preconditioners [6], the most commonly
used technique is to take the optimal approximation A0 of A with respect to the Frobenius norm, i.e. A0 is the
block diagonal matrix such that kA� A0kF ¼ kbA � bA0kF is minimal, where
kA� A0kF ¼
XNu

‘;‘0¼1

jðAÞ‘;‘0 � ðA0Þ‘;‘0 j
2
: ð25Þ
Because the Frobenius norm remains invariant under unitary transformations, bA0 is obtained upon replacingbT n
er
� bH n

er
by its diagonal part in (21). It leads to the formulation of the preconditioner
A0 ¼ ðU � IN�1ÞbA0ðU H � IN�1Þ ð26Þ

with
bA0 ¼ bD2x � IN�1 þ IM�1 � D2y þ
1

ðDyÞ2
C� ðB1 þ BN�1Þ þ k2

0

XN�1

n¼1

dðbT n
er
� bH n

er
Þ � Bn: ð27Þ
d(.) indicates a diagonal matrix with elements that are the diagonal elements of the argument. The decoupling
allows for a separate treatment of the modal constituents. Hence, the preconditioner replaces the initial linear
system of size (M � 1)(N � 1) by M � 1 decoupled systems of size N � 1. More precisely, to solve the equation
A0 w = d, we compute the sine transform of the right-hand side
d̂ ¼ ðU H � IN�1Þd: ð28Þ

Then, we solve the M � 1 decoupled systems
bAð‘Þ0 ŵ½‘; :� ¼ d̂½‘; :�; ð29Þ

where
bAð‘Þ0 ¼ D2y � k2
x ½‘�IN�1 þ

e�c½‘�Dy

ðDyÞ2
ðB1 þ BN�1Þ þ k2

0K
ð‘Þ
ee

r
; ð30Þ
in which Kð‘Þee
r

are diagonal matrices containing an effective permittivity that depends on the modal order, and
on the longitudinal coordinate according to
ee
r ½‘; n� ¼

1ffiffiffiffiffiffiffi
2M
p ð~er½0; n� � ~er½2‘; n�Þ: ð31Þ
Thus, the decoupled systems can be identified with single-mode physical configurations with an effective dielec-
tric permittivity that is invariant along the transverse coordinate. Finally the solution is given by the sine
transform of ŵ
w ¼ ðU � IN�1Þŵ: ð32Þ

The use of A0 as a preconditioner is only worthwhile if solving A0w = d is inexpensive for any vector d. The
decoupled systems are tridiagonal and symmetric. Therefore, each one can be solved in O(N) operations. Tak-
ing into account the computations of the sine transforms in (28) and (32), the complexity of solving A0w = d is
of order O(MN logM). Hence, during one iteration, the cost of the preconditioner remains moderate, even if it
is slightly more expensive than the cost of the matrix–vector product Av.

3. Periodic structures

3.1. Configuration and formulation

We adopt a similar approach for dielectric structures that are periodic with respect to x (Fig. 2)
erðxþ qX ; yÞ ¼ erðx; yÞ 8q 2 Z: ð33Þ



Fig. 2. Periodic structure configuration.
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We assume that the incident field is a TE plane wave
Ei
zðrÞ ¼ Ei

z0e�jki :r; ð34Þ
where ki = (kxi,kyi)
T stands for the incident wave vector.

As in the parallel-plate case, the problem can be reduced to the inhomogeneous Helmholtz equation, (2),
with a contrast current density source term, as in (3). In the x-direction, the extent of the computational
domain can be limited to one period (0 6 x 6 X) by means of Bloch-wave boundary conditions, i.e.
Es
zðX ; yÞ ¼ Es

zð0; yÞe�jkxiX : ð35Þ
In the y-direction, the computational domain is restricted to the section where the scatterers are located.

3.2. Discretization

Starting from the grid defined in (5), the discretization of the Helmholtz equation remains as in (6), albeit
that m = 0, . . .,M � 1 and n = 1, . . .,N � 1, i.e. m = 0 is now included. The discretized equation, combined
with modal absorbing and Bloch-wave boundary conditions, yield a linear system Au = b of size M(N � 1),
A ¼ D2x � IN�1 þ IM � D2y þ
1

ðDyÞ2
ðUCU H Þ � ðB1 þ BN�1Þ þ k2

0Ker : ð36Þ
Note that (36) has the same form as (17), albeit that there are some slight differences in the definition of the
constituent terms. The diagonal matrix Ker contains the relative permittivity values both on the interior points
and on the boundary m = 0. In view of Bloch-wave boundary conditions, the matrix D2x becomes
D2x ¼
1

ðDxÞ2
½tridiagMð1;�2; 1Þ þ P �; ð37Þ
where
ðP Þ‘þ1;‘0þ1 ¼
ejkxiX for ‘ ¼ 0; ‘0 ¼ M � 1;

e�jkxiX for ‘ ¼ M � 1; ‘0 ¼ 0;

0 otherwise:

8><
>: ð38Þ
The unitary transformation U is associated with the modal representation of the solution in the periodic struc-
ture. It may be expressed as
UH ¼ F Ki; ð39Þ
where Ki introduces the phase shifts associated with the angle of incidence,
Ki ¼ diagMð1; ejkxiDx; . . . ; ejðM�1ÞkxiDxÞ ð40Þ

and F is the matrix associated with the discrete Fourier transform of size M. Its elements are given by



7762 A. Chabory et al. / Journal of Computational Physics 227 (2008) 7755–7767
ðF Þ‘þ1;‘0þ1 ¼
ej2p‘‘0=Mffiffiffiffiffi

M
p ; ‘; ‘0 ¼ 0; . . . M � 1: ð41Þ
Further, the diagonal matrix C contains the propagation and/or attenuation factors of modes that have trav-
eled a distance Dy, i.e.
C ¼ diagMðe�c½0�Dy ; . . . ; e�c½M�1�DyÞ: ð42Þ

The propagation coefficients c are associated with the discretized Helmholtz equation with Bloch-wave bound-
ary conditions,
c½‘� ¼ 2

Dy
arcsin

Dy
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x ½‘� � k2
0

q� �
; ð43Þ
where
kx½‘� ¼
2

Dx
sin

kxiDx
2
þ p‘

M

� �
ð44Þ
are the corresponding transverse wavenumbers.

3.3. Preconditioner

We start with the formulation of the U-transform of A
bA ¼ ðU H � IN�1ÞAðU � IN�1Þ: ð45Þ

Using (36) and results from [6], we obtain an explicit expression for bA
bA ¼ bD2x � IN�1 þ IM � D2y þ
1

D2
y

C� ðB1 þ BN�1Þ þ
XN�1

n¼1

bCn
er
� Bn; ð46Þ
where the circulant matrices bCn
er

are generated by the discrete Fourier transform �er½‘; n� of er[m,n] with respect
to m. Their elements are given by
ðbCn
er
Þ‘;‘0 ¼

1ffiffiffiffiffi
M
p �er½‘� ‘0; n�: ð47Þ
The preconditioner A0 is defined as the optimal approximation of A with respect to the Frobenius norm such
that the modal constituents are decoupled. In the periodic case, this amounts to
A0 ¼ ðU � IN�1ÞbA0ðU H � IN�1Þ ð48Þ

with
bA0 ¼ bD2x � IN�1 þ IM � D2y þ
1

ðDyÞ2
C� ðB1 þ BN�1Þ þ

XN�1

n¼1

dðbCn
er
Þ � Bn: ð49Þ
To solve A0w = d, d is subjected to a unitary transformation. Then the decoupled systems bAð‘Þ0 ŵ½‘; :� ¼ d̂½‘; :�
are solved for ‘ = 0, . . .,M � 1, where
bAð‘Þ0 ¼ D2y � k2
x ½‘�IN�1 þ

e�c½‘�Dy

ðDyÞ2
ðB1 þ BN�1Þ þ k2

0Kee
r
; ð50Þ
in which Kee
r

is a diagonal matrix, with the effective permittivity
ee
r ½‘; n� ¼

1ffiffiffiffiffi
M
p �er½0; n� ¼

1

M

XM�1

m¼0

er½m; n� ð51Þ
on its diagonal. Just as in the parallel-plate waveguide case, the decoupled systems can be interpreted as single-
mode configurations with an effective permittivity independent of the transverse coordinate. However, the
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result is slightly different because the discrete transform we use is not the same. Here, the effective permittivity
is also independent of the mode order and corresponds to the mean value of er with respect to m.

Finally, w is obtained via a unitary transformation on ŵ.

4. Numerical experiments

4.1. Parallel-plate waveguide

As an illustration, we consider a parallel-plate waveguide section filled by 4 square dielectric scatterers of
relative permittivity er1 = 8 and er2 = 12 (Fig. 3). The excitation is provided by a first-order incident mode at a
frequency of 1000 GHz. The iterative method we employ is BiCGstab(2) for which each iteration involves the
computation of four matrix–vector products. This choice is motivated by the numerical experiments con-
ducted in [13], in which for five different sparse linear systems, shorter computation times are obtained with
BiCGstab(2) than with other iterative methods (Bi-CG, CGS, GMRES, BiCGstab(l) with l 6¼ 2). In all the
simulations, the stopping criterion is defined such that the norm of the residual, ri = b � Aui, after the last iter-
ation is reduced by a factor of 10�6 with respect to the norm of b. The number of points is determined so that
the grid steps along x and y are the same, and that the criterion k0

ffiffiffiffi
er
p

Dx < p=5 (i.e. at least ten points per local
wavelength) is satisfied everywhere. The choice N = 2M = 128 fulfills that criteria.

In Fig. 4, we have depicted the amplitude of the scattered field computed with these parameters. To eval-
uate the efficiency of the preconditioner in this simulation, we compare in Table 1 the number of matrix–vector
products and the computation times obtained for different scenarios, viz., without any preconditioner, with
ILU(0) and ILU(3) factorizations, and with the fast transform based preconditioner (FTP). Observe that
FTP outperforms ILU(0) and ILU(3). The decrease in the computation time is about a factor of 9.5 as com-
pared with no preconditioning, about a factor of 3 with ILU(0), and about a factor of 2 with ILU(3).

Let us investigate which parameters play a role in the performance of the preconditioner. In Fig. 5, we keep
the same physical configuration but we modify the grid size. Observe that the FTP preconditioner yields
Fig. 3. Geometry of the waveguide filled by four scatterers.

Fig. 4. Amplitude of the electric field Es
z.



Table 1
Number of matrix–vector products and computation times without any preconditioner, with ILU(0), with ILU(3) and with FTP

No ILU(0) ILU(3) FTP

Matrix–vector products 3357 429 133 65
CPU time (s) 2.18 0.71 0.45 0.23
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Fig. 5. Influence of the grid size on the performances of the preconditioners: (a) comparison with no preconditioner and (b) comparison
with ILU(0) and ILU(3).
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almost the same number of iterations regardless of the grid size. By contrast, if no preconditioner is used or an
ILU preconditioner, then the number of iterations increases significantly when the grid size is decreased.

In the next set of simulations, the influence of two physical parameters is analyzed. In Fig. 6, we show that
FTP outperforms ILU(0) and ILU(3) in terms of the iteration count for relative permittivity values er2 = 12
and er1 varying from 2 to 30. Besides, we observe that high permittivity contrasts require more iterations with
all methods. For FTP, this behavior can be related to the decoupling approximation. When the dielectric pro-
file has strong transversal variations, the condition j~er½0; n�j � j~er½l; n�j for l 6¼ 0 does not hold. Therefore, the
diagonal terms in bT n

er
� bH n

er
cease to be dominant, which affects the conditioning of A�1

0 A, and yields a degra-
dation of the performance.

In Fig. 6, also the influence of the frequency on the preconditioners is investigated. Even if FTP comprises a
considerable improvement over ILU(0) and ILU(3) in the entire frequency range, we observe a significant deg-
radation of the performance at high frequencies.

In the last simulation of this section, we look at the performances of the preconditioners when the limits of
the scatterers are not parallel to one of the axes. In Table 2, we show the results obtained when the four
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Fig. 6. Influence of 2 physical parameters on the performances of the preconditioners: (a) the relative permittivity er1 and (b) the
frequency.

Table 2
Performance of the preconditioners when the scatterers are rotated an angle of 45�

No ILU(0) ILU(3) FTP

Matrix–vector products 1393 313 101 45
CPU time (s) 0.94 0.52 0.35 0.19
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scatterers are rotated an angle of 45�. Note that again FTP outperforms ILU(0) and ILU(3) in terms of iter-
ation count and computation time.

4.2. Periodic structure

Upon imposing Bloch-wave boundary conditions at x = 0 and x = X, we obtain an electromagnetic-band-
gap (EBG) crystal working in the millimeter-wave range. This kind of structure is generally electromagneti-
cally characterized by its transmission and reflection coefficients in the specular directions.

We have examined the ability of the FTP-preconditioned FDFD to obtain these coefficients for a wide
range of frequencies and angles of incidence. In Fig. 7a, the simulation, performed at normal incidence and
up to 1400 GHz, confirms the presence of a band gap centered at 700 GHz and a bandwidth of 400 GHz.
However, as in the waveguide case, the performance of our method deteriorates at high frequencies. The influ-
ence of the angle of incidence is shown at a frequency of 1000 GHz in Fig. 7b. No significant effects are noticed
in the iteration count, even at grazing incidence. For validation purposes, we have checked that exactly the
same results are obtained when the computation domain includes two periods of the structure.
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Fig. 7. Evolution of the transmission coefficient with respect to: (a) the frequency at normal incidence and (b) the incidence angle at
1000 GHz.
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5. Conclusion

We have proposed an FDFD method to compute the fields scattered by dielectric objects placed inside a par-
allel-plate waveguide or arranged periodically with respect to the transverse direction. We have used the modal
representation of the solution to obtain an exact discretized formulation for the absorbing boundary condi-
tions. The main result is the development of preconditioners by which a significant acceleration may be
achieved. These fast preconditioners are based on a physical approximation and involve discrete fast trans-
forms. They are developed so that they introduce approximations only in the inhomogeneous sections of the
structure. They are defined as optimal approximations with respect to the Frobenius norm, such that the modal
constituents in the structure are decoupled. They amount to replacing the original 2D configuration by several
1D decoupled effective configurations. Numerical tests have shown that our approach outperforms significantly
ILU(0) and ILU(3) preconditioners in terms of the computation time. Furthermore, we have observed that
although the iteration count increases with the permittivity contrast and with frequency, it is independent of
the grid size. We have also shown that this method is suitable to compute the transmission coefficients of
2D electromagnetic-band-gap crystals. An important extension of this work would be to solve three-dimen-
sional electromagnetic problems for which the complete Yee staggered grid for vector fields is needed.
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